張智皓/哲學分析可以解釋因果關係嗎?

聯合新聞網 沃草烙哲學
圖/沃草烙哲學

日常生活中,沒有人能完全避開「因果關係」這個概念。例如,當人問出「為什麼問題」(why question)多半想尋求的就是因果說明:為什麼會有潮汐?為什麼太陽會東升西落?為什麼普拿疼可以止痛?為什麼同花打不過full house?1

這些問題不只是格式類似,它們都在為想要說明的現象尋求一個原因,一個因果上的說明。如果要給出正確的因果說明,我們得知道什麼是因果說明,換句話說,我們需要好的因果分析理論,用以分析事件之間的因果關係。

專業領域裡,因果關係的判斷也一樣重要。在醫學上,因果關係可以幫助我們判斷應該要採取怎麼樣的醫療行為:「如果我對病人施打抗生素,可以治療他的肺炎,因為肺炎源於細菌感染,而抗生素可以治療細菌感染。」在科學上,因果關係的判斷可以幫助我們預測世界:「如果氣壓下降,那表示即將下雨了,因為在低氣壓區,周圍空氣的流入會迫使空氣逐漸上升,遇到高空低溫時凝結成水滴,達到一定程度則落下成雨。」在法律上,因果關係可以幫助我們判斷責任歸屬:「基於駕駛闖紅燈而導致這次的事故,駕駛應該要為這次的意外負責。」

因果關係影響範圍廣闊,我們也不停地在使用這個概念,對許多人來說這不成問題,在日常生活中也沒遇到什麼困難。然而,哲學家發現,當我們試圖為因果關係尋求一套精確的理論時,卻總是遇到困難。

如此問題就來了,如果我們沒有辦法找到一套足夠好的因果理論,那我們平常到底都在說什麼?現在,不妨讓我們看看哲學家在因果關係的分析中,曾經做過哪些努力,以及這些成果為什麼還不夠好。或許,可以稍微讓人理解到,定義因果關係真的很不簡單。2

傳統分析

讓我從一個最簡單的定義開始:

事件C是事件E的原因,當且僅當,(a)事件C發生在事件E之前;(b)C與E各自屬於某類的事件類型T1與T2,當每一次事件類型T1發生時,T2都會跟著發生。34

傳統分析又被稱為「休姆式分析」(Humean analysis),英國哲學家休姆(David Hume)最早使用這樣的分析來說明,當我們一般在談論因果關係時,我們的意思就如同傳統分析所表達的那樣。5

傳統分析捕捉到了因果關係的一些直覺面向,比方說,在時間順序上,原因會發生在結果之前。此外,原因跟結果之間有一個密切的連結,這個連結使得結果會伴隨著原因而發生。儘管這些直覺面向適當地被傳統分析捕捉,這樣的分析依然會面對困難。想像這個例子:

張三很喜歡販賣機飲料,設想他每次買販賣機飲料時,都會在投完幣並選擇飲料後大喊「南無阿彌陀佛!」,飲料都會跟著落下。

根據傳統分析,我們好像必須承認,在張三買飲料的那些場合裡,張三大喊「南無阿彌陀佛!」是他買的飲料落下的原因:他的大喊先於飲料跑出來,而且每次他大喊完,飲料都會跑出來。大概沒有人會同意這個判斷正確。然而,這樣的判斷完全符合傳統分析的要求。

有一些支持傳統分析的人試圖調整內容來避免這樣的問題。然而,這些調整時常會讓定義和討論變得十分瑣碎,我建議我們就此打住,參考另外一種類型的因果理論。

機率分析

事件C是事件E的原因,當且僅當,C發生而且E發生,而且C的發生會提高E發生的機率。

關於從機率觀點出發的因果關係分析,其代表人物可以回溯到美國哲學家蘇佩斯(Patrick Suppes),他在1970出版的「因果的機率理論」(A Probabilistic Theory of Causality)對機率分析有著重要的影響。

機率分析看起來可以避免前面的販賣機案例,因為張三大喊「南無阿彌陀佛!」並不會增加飲料落下的機率。機率分析不會得出張三大喊「南無阿彌陀佛!」是飲料落下的原因。除此之外,此分析也同樣捕捉到兩個重要直覺:原因先於結果、原因跟結果有密切關聯(原因的出現會使結果出現的機率增加)。

然而我們想問:我們要的因果關係是這種機率性的關係嗎?在這種理解底下,只要前面的事件可以增進後面事件發生的機率,哪怕是增進一點點,只要後面的事件出現,我們都可以說前面的事件是原因,這看起來似乎有點違反直覺。

考慮這個例子:假設李四買了一張樂透彩券,然後他中獎了。根據機率分析,我們得說:李四中樂透的原因,是因為他買了一張樂透彩券,他買樂透彩券提高了他中獎的機率。然而,這樣的判斷是適當的嗎?旁邊槓龜的王五聽到了以後可能會很不以為然地說:「他買樂透彩券是他中獎的原因?我也買了,怎麼就沒中獎?」

機率分析或許可以透過設定提高「多少」機率作為門檻,來避免前述的困難。比方說,C的發生一定要提高E發生的機率達到80%,才算是原因。然而,不管你怎麼選數字,給出的門檻都是武斷的,這種武斷性對許多哲學家來說很不舒服。所以,現在也暫時讓我們放下機率分析,看看下一種因果理論。

反事實條件句分析

事件C是事件E的原因,當且僅當,(1)假若C發生,則E會發生;(2)假若C沒有發生,則E不會發生。

用反事實條件句分析因果關係的著名哲學家中,最有名的大概非美國哲學家路易斯(David Lewis)莫屬。路易斯與史托內克(Robert Stalnaker)對於反事實條件句的語意學(the semantic of counterfactual conditional)有著極其豐碩的研究成果,路易斯也將他的研究套用進因果關係的討論中。6

在使用反事實條件句分析判斷因果關係時,我們需要考量的是C與E之間是否具有反事實依賴關係(counterfactual dependence)。甚麼意思?簡單來說,我們先不去考量事實是什麼,我們去設想,假若C發生了,E會不會發生?假若C沒發生,E會不會不發生?如果答案是肯定的,那麼我們可以說C與E具有反事實依賴關係,而根據反事實條件句分析,具有反事實依賴關係的兩個事件具有因果關係。

反事實依賴關係可以避免前面的樂透案例。雖然假若李四不買樂透彩券,他就不會中樂透。但假若他買樂透彩券,這並不會因此得出他會中樂透。在反事實條件句分析中,有一個條件句沒有被滿足,李四買樂透彩券並非中樂透的原因。同樣的,此分析也不會得出張三大喊「南無阿彌陀佛!」是飲料掉出來的原因,假若張三沒有大喊這句話,他的飲料還是會掉出來,因此不滿足反事實條件句分析的條件。

反事實條件句分析看起來滿有說服力,可惜,這依然不能成功的捕捉因果關係,因為它面臨另一個困難的反例,設想以下案例:

殺手一號準備要暗殺X博士,組織設計了保險機制,如果一號到時候心軟了沒有開槍,保險機制啟動,殺手二號會出手殺死X博士,以確保最終X博士一定會死亡。最後,一號確實執行任務,殺死博士。

在這個案例中,如果我們問「什麼是博士死亡的原因?」一個顯而易見的答案是「殺手一號的暗殺是博士死亡的原因!」然而,反事實條件句分析卻無法給我們這個答案。反事實條件句分析會說「殺手一號的暗殺不是博士死亡的原因。」理由在於,假若殺手一號沒出手,博士還是會死亡,因為殺手二號會出手。換言之,殺手一號的行為,與博士是否死亡之間沒有反事實依賴關係,(2)不成立。這結果顯然不符合我們的直覺,我們大概都會同意是殺手一號殺死博士的。因此,這種版本的反事實條件句分析看來也還有一段路要走。

從目前的學界現況來看,傳統分析已經被多數哲學家給放棄,而機率分析與反事實條件句分析則還有不少支持者。如果仔細觀察後面這兩種因果分析,你會發現,其實反事實條件句分析可以被看做是機率分析的一種特殊案例。如果從機率分析的角度來看,反事實條件句分析中所謂的反事實依賴關係,其實就是在說C的發生,會使得E發生的機率提高到100%。

基於這樣的相似性,有哲學家發展了一套被稱為「因果模型分析」(Causal Model Analysis)的分析理論,此種分析方法可以同時應用在機率分析與反事實條件句分析上,協助我們判斷甚麼叫做因果關係,至於什麼叫做因果模型分析,恐怕就不是這篇文章能夠說清楚的了,如果有興趣的讀者,不妨閱讀參考資料中希區考克(Christopher Hitchcock)與佩爾(Judea Pearl)的文章。

小結

這篇文章介紹了三種類型的因果關係理論,文章中所提到的分析都只是各自類型中最粗糙的版本,各自理論的支持者可能會透過不同的方法修改理論,避免難題。如前所述,傳統分析目前已經幾乎被放棄了,而另外兩種因果分析則還是一直有所進展。

比方說,因果模型分析可以在機率分析與反事實條件句分析的基礎下,說明在滿足哪些前提時,機率分析或者反事實條件句分析可以做為因果關係的充分必要條件。在因果關係的討論中,因果模型分析或許是目前最蓬勃發展的一套分析方法。

不論如何,到目前為止,哲學家依然在尋找一個能令所有人滿意的因果分析理論。我們可以看到,要精確描述一個在日常生活中這麼常見,在各領域都非常重要的概念,是如此困難。大家也不妨思考看看,對你來說,一個精確描述因果關係的理論應該如何被理解?有沒有可能,因果關係原則上沒有一個統一的理論?脈絡的不同是否適用不同的因果理論(比方說,機率分析在醫學領域與大氣科學領域似乎比較適合;反事實條件句分析似乎在物理學領域與法律領域較為適用)?又或者,如同休姆所想的,因果關係不是實 際存在的性質,只是我們心理投射到這個世界的假象?

參考資料

  1. Hitchcock, C. 2007. “Prevention, preemption, and the principle of sufficient reason”, Philosophical Review 116: 495-532.
  2. Hitchcock, C. "Probabilistic Causation", The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.).
  3. Lewis, D. 1973a. Counterfactuals, Oxford: Blackwell.
  4. Lewis, D. 1973b. “Causation”, Journal of Philosophy, 70: 556–67.
  5. Lowe, E. J. 2002. "Causes and Conditions", A Survey of Metaphysics. New York: Oxford University pp. 155-173.
  6. Pearl, J. 2000. Causality: Models, Reasoning, and Inference, Cambridge: Cambridge University Press.
  7. Strawson, G. 1989. The Secret Connexion: Causation, Realism, and David Hume, Oxford: Clarendon Press.
  8. Suppes, P. 1970. A Probabilistic Theory of Causality, Amsterdam: North Holland.
  9. 張智皓(2017)。〈無原因差異之積極與消極安樂死〉,《政治與社會哲學評論》,61: 73-128。


 

沃草烙哲學

烙哲學是沃草支援的哲學寫作社群,藉由書寫和討論,我們希望讓大家知道:日...

沃草烙哲學 哲學系 時事觀察

推薦文章

留言